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The quality and availability of positional information (location, orientation) is a key resource that strongly influences the
way in which ambient services can be provided to nomadic users. In this article, we propose a number of mechanisms that
tackle resource restrictions related to positional information on two levels, the application level and the positioning level. We
introduce a generic model and architecture, which allows for the development of resource-aware applications that adapt to
the quality of positional information. Our approach provides location-based services with fine-grained control over the balance
between resource allocation and quality of positional information. It also enables resource-unaware applications to benefit from
adaptation on the positioning level. The feasibility of the approach is demonstrated by a case study using a mobile tourist
guide.

1 Motivation

Increasingly computer systems consist of large numbers of inter-
connected mobile and embedded devices. To ensure that these
systems and devices enhance our life without disrupting it we
need intelligent and intuitive interfaces with the ability to recog-
nise and respond to a user’s situation and context.

Location is one of the key context parameters and thus a
positioning service, i. e. a service that is able to reliably and
accurately determine a user’s position, is a key service for any
ambient system. The requirement to minimise user disruption
directly translates into the need to minimise service interrup-
tions and increase service availability. While there are many
technologies for locating a device or user (from GPS to camera-
based tracking systems), none are available universally (GPS,
for example, requires good ’visibility’ of satellites and usually
does not work indoors). This calls for an adaptable positioning
service that makes use of a number of redundant or alternative
location systems and which is able to dynamically combine them
or switch between them.

In this paper we describe a model and implementation of
an adaptive positioning service for ambient systems that dy-
namically and seamlessly combines three positioning methods:
measurement-based positioning, inference-based positioning, and
interactive positioning. This service helps to minimise user dis-
ruption caused by service interruptions: it guarantees that posi-
tioning information is available as long as one of the underlying
methods is able to deliver reliable data. To enable applications
(and application designers) to influence how adaptation is per-
formed, the service provides a well-defined quality-of-service in-
terface for specifying the required quality of positioning informa-
tion. We demonstrate the feasibility and utility of this approach
by describing a prototype implementation and case study.

In the remainder of this paper we provide an overview of dif-
ferent positioning techniques and describe a model for adaptive
positioning. This is followed by a discussion of the implementa-
tion and a case study of using an adaptive positioning service in
a mobile tourist guide.

2 Positioning techniques

There are a number of different ways to determine the position
of a user and/or a device in space. Regardless of their respective
properties and technical requirements, we have identified three
distinct categories of techniques based on the main source of
knowledge used to acquire positional information. These are:

• Measurement based positioning
Measurement based positioning methods gather data from
sensors and other positioning determination equipment
and directly compute the device location. Perhaps the
best known example of measurement based positioning is
the Global Positioning System (GPS) (e. g. [15]). How-
ever, infrared beacons (e. g. [3]) and ultra-sound receivers
(e. g. [1]) have also been used to the same effect. Fur-
thermore, wireless communication networks such as GSM
or 802.11 WLAN provide another means to determine the
location of a mobile device (e. g. [5]). This is a commonly
used method to acquire positional information in ambient
and mobile systems.

• Inference based positioning
Inference based positioning methods perform reasoning
to improve the quality and/or precision of location infor-
mation derived with measurement based methods. The
most important example of inference based positioning is
dead reckoning. The majority of inference based meth-
ods combine direct measurements with knowledge about
past device locations and current movement patterns to
infer a device’s current location (cf. e. g. [14]). Inference
based methods generate hypotheses: hypotheses are more
or less reasonable but are not guaranteed to be correct.

• Interactive positioning
Interactive positioning is a method that uses an inter-
active dialogue between system and user to determine
the position [13], and is thus only applicable if a user is
present and willing to engage into interaction. A confir-
mation dialogue is the most simple example for interactive
positioning: the system asks the user to confirm whether
they really are at the position that was computed. A more
sophisticated approach is to ask the user for an initial and
rough estimate of the current location and to feed this
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information into an inference based method to improve
accuracy. For the mobile tourist guide system Deep Map
[16] we developed an approach, which uses input from the
user to eliminate some of the competing position hypothe-
ses derived by an inference based method or other means
[13]. The system can determines the user’s current loca-
tion by proactively initiating a dialogue about the visibility
of nearby landmarks and prominent buildings [13]. This
dialogue is optimised in that it consists of the smallest
possible number of questions required to determine the
location with respect to a desired positioning accuracy.

Each of these three techniques for positioning has advan-
tages and disadvantages. Measurement based methods can be
very accurate but in some cases are not very reliable. Measure-
ments and sensor information can exhibit systematic yet difficult
to predict errors due to the characteristics of the operating en-
vironment. For example, bad weather, narrow aisles and dense
vegetation can severely deteriorate the reception of GPS signals.
Infrared suffers from reflections and shielding, while ultra-sound
is prone to interference. Approaches based on network cells fre-
quently face reception problems, e. g. in crowded places.

Inference based methods can work in situations where mea-
surement based methods fail. In Deep Map, for example, we
used a dead reckoning algorithm that takes into account contex-
tual information such as previous locations, the current means of
transportation, and the user’s age and physical constitution to
derive hypotheses about the user’s speed, direction of movement
and, ultimately, location. This way, we were able to determine
the user’s location in situations in which measurement based
methods alone would fail [12]. On the downside, it is oftentimes
difficult to predict the accuracy of the derived location informa-
tion. In addition, inference based methods can be computation-
ally expensive and might not lend themselves to implementation
on less powerful mobile devices.

Finally, interactive positioning is able to deliver location
information even if no positioning determination equipment is
available. For example, we have demonstrated that it is possi-
ble to accurately determine the user’s current location by asking
the user a small number of very specific questions regarding the
visibility of landmarks [13]. Interactive methods, however, are
generally more intrusive and time consuming, and they can de-
pend heavily on advanced language processing capabilities of a
system. Thus their application has to be carefully evaluated.

3 Adaptive positioning

The discussion above highlights that there is no single method
that is able to deliver the best possible position information in all
circumstances. To address this issue we developed a new method
and system for adaptive positioning. In particular, we developed
a resource-aware adaptive positioning service, a component for
ambient and mobile systems that can be used by location-aware
applications to acquire location information with varying quality
of service attributes. The goal of this new approach is to use
adaptation to increase availability of location information and
to deliver location information with the quality of service as
required by a particular application.

3.1 Quality of service model

Our quality of service model for resource aware adaptive posi-
tioning has three main constituents: location aware applications,
a positioning service and positioning resources. One or more lo-
cation aware applications request location information from a
central positioning service. This service relies on a (flexible)
number of positioning resources involved in delivering location
information: a series of positioning sensors (such as a GPS re-
ceiver), computing resources (such as a CPU), networking re-
sources (such as a wireless network), storage resources (such as
system memory) and - most notably - the user. Users are mod-
elled as a resource because their collaboration is required for
interactive positioning. An application can access the position-
ing service by means of an positioning application programming
interface (positioning API). This interface allows applications to
request location information with specific QoS characteristics.
Applications send qualified requests to the positioning service
and in return receive qualified responses. The abstract structure
of these messages is as follows:

• get-current-position(time, distance, confidence, confi-
denceAngle, confidenceMotion)
The parameters describe the required quality of infor-
mation in terms of recency (time), maximum deviation
(distance) as well as confidence with respect to location
(confidence), orientation (confidenceAngle), and motion
(confidenceMotion). All parameters are optional. In case
they are not passed, they are assumed to be set in the
least restrictive way, e. g. confidence values are set to
‘very low’ and recency is set to ‘anytime’.

• current-position: position, errorX, errorY, viewDirection,
viewAngle, viewInclination, viewDepth, speed, confidence,
confidenceAngle, confidenceMotion
The corresponding reply contains the location (position)
with deviation in x/y-direction (errorX/Y), various infor-
mation describing the field of view of the user (viewDirec-
tion/Angle/Inclination/Depth), the user’s current speed
(speed) and the corresponding confidence values (confi-
dence, confidenceAngle, confidenceMotion).

3.2 Adaptive positioning service

When a positioning service combines measurement, inference,
and interaction to determine the user’s current location, it gains
the ability to adapt not only to the availability of sensor data
but also to other resources such as time or memory. For ex-
ample, if there are severe time constraints, the number of user
interactions may be reduced (at the expense of precision). This
applies especially to processes aimed at reducing the uncertainty
as they are usually iterative. Memory usage can be slashed by
skipping certain processes completely (again at the expense of
precision).

Figure 1 (right) illustrates how the QoS model described in
3.1 was implemented in the Deep Map prototype to provide for
robust and adaptive positioning [12]. Measurements are used
to directly compute the current position, and to seed the other
processes with an initial hypothesis. One of these processes
is inference, which consists of a context-aware dead reckoning
algorithm. The inference process is tightly linked to interaction
related processes. Whenever the result of the algorithm is not
adequate for the task at hand – e. g. when it lacks precision – the
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Figure 1: Example positioning architecture implementing the QoS model (left), and processes involved in determining the user’s
position: measurement, inference and interaction (right).

output of dead reckoning is passed on to interaction for further
processing. Similarly, when new information is acquired through
interaction, the inference process is triggered in order to evaluate
whether the user’s current position can now be determined in
accordance with the specified service requirements.

The combination of these methods allows for the dynamic
adaptation to the quality of sensor data. As long as the output
of the sensors is sufficient to determine the user’s position, no
process except measurement is triggered. When the quality of
sensor data degrades or when there is not enough data avail-
able, inference and/or interaction are triggered. This results in
higher resource consumption, e. g. in terms of time, CPU power
or memory, hence establishing an inverse relationship between
quality of sensor data and resource consumption.

In general, the positioning service uses the application’s QoS
parameters (mentioned in the previous section) as guidelines and
makes reasonable effort to deliver the requested level of service.
This means if the positioning service is able to deliver the QoS
level as requested by the application it will do so. If however
the requested QoS level exceeds the maximum deliverable QoS
level, the response will be marked accordingly. For example, an
application might request location information that is accurate
to within a few centimetres, yet available positioning sensors
may only deliver information that is accurate to within meters.
In this case, the errorX/errorY fields would reflect the higher
granularity of the available information.

In order to facilitate application development, requests are
interpreted by a simple algorithm. It analyses the parameters
passed in the request and tries to satisfy the constraints by con-
suming as few resources as possible. For example, if sensor data
meets the criteria specified in a request, no further resources are
used to generate the reply. Applications can also decide to not
pass some parameters, which are then interpreted as being set
to the least restrictive values. Consequently, by not specifying

any parameters, an application can effectively access positional
information at the quality that is currently available without the
usage of further resources. This information can then serve as
a basis for deciding, which adaptation strategy to apply. For
example, in case an application wants to invest more resources
into improving the quality of positional information, it can re-
submit its original request with some parameters set to tighter
constraints.

3.3 Application level adaptation

The adaptive positioning service is an example of application-
aware adaptation [17]. There is a collaborative partnership be-
tween location-aware applications and the positioning service.
The application sets the required QoS level and the position-
ing service determines how best to satisfy the request. In case
the QoS request cannot be satisfied the service delivers the best
possible level and informs the application. The application can
then make a strategic decision of how best to deal with this
situation. If the positioning service cannot deliver the QoS level
requested by an application, the requesting application can then
react in one of four ways, i. e. by applying one of the following
strategies:

1. Allocate more resources to improve the current posi-
tion hypothesis
For example, if the initial request only asked for positional
information of any quality, another request with tighter
constraints may be sent to the positioning service. This
will result in the allocation of further resources on the
positioning level.

2. Use more resources to still provide its service at its
optimal quality
Depending on the service an application is providing, it
may be possible to still provide the service even if the
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quality is less than desired. For example, a mapping ser-
vice may decide to generate a map that is more detailed
than the one it would produce if the quality of positional
information was adequate. The increased level of detail
will then result in higher resource consumption, e. g. in
terms of computing power or memory usage.

3. Degrade the quality of the service it provides
An example for this strategy is an augmented reality ap-
plication that would switch from a first person perspective
to a birds-eye view when the current location hypothesis
is not precise enough.

4. Fail at providing its service
This is the standard ‘strategy’ of non-adaptive applica-
tions. Obviously, this is not a satisfying solution for the
user of a system, who may be willing to accept either a
lower-quality of service or longer response times to avoid
failure.

All of these strategies are supported by the model and ar-
chitecture described here.

3.4 Positioning architecture

In order to simplify the realisation of these strategies, we de-
signed an architecture that supports not only resource-aware
adaptation but also provides transparent access to the resource-
adaptive determination of the user’s current location. Figure 1
(left) depicts the positioning service architecture. An applica-
tion in need of positional information sends a qualified request
(see 3.1) to a single component in charge of determining the
user’s current location (position determination). The qualified
reply (see 3.1) enables it to decide whether it needs to apply an
adaptation strategy, and if so, which one.

If the current position hypothesis does not meet the require-
ments in the context of an application, it can decide to trigger
the inference process and/or interaction. This will result in an
improvement of the quality of positional information at the ex-
pense of further resources. While the second strategy listed
above is application-dependent, the implementation of the third
one (degradation of service quality) can benefit from the ap-
proach described in the previous section. The distinction of
several different processes related to positioning lends itself to
the definition of several levels of quality and confidence. These
levels provide a basic scale of location quality, which facilitates
the definition of distinct levels of degradation. For example, an
application can define an adaptation strategy that degrades the
quality of its service to the lowest level in case sensor data is of
very bad quality. It can define another one that optimises the
quality of its service for a scenario, where location information
is of excellent precision but has a low confidence value.

The architecture also enables resource-unaware application
to transparently benefit from adaptation to sensor data of vary-
ing quality. Such an application can request positional informa-
tion of the highest quality level, which will result in the activation
of all processes related to positioning depending on the quality
of sensor data. The positioning service will then adaptively apply
all necessary processes in order to attain the request quality of
service. The holonic structure [7] of our architecture renders this
access completely transparent. Resource-adaptive applications
are also shielded from the complexity of position determination

while being provided with fine-grained control over resource con-
sumption. The following section will present examples from a
prototypical implementation of the presented architecture.

4 A case study

Deep Map [16] is a mobile tourist guide that provides a number
of (location-based) services, which it adapts to the situational
context. Users can request information on objects in the city of
Heidelberg and ask for localisation of these. Furthermore, the
system can incrementally guide them to arbitrary locations or
provide complete directions. Additionally, Deep Map can gener-
ate tailored maps of any location in the city. The system provides
a multi-modal interface that combines speech, text, images, and
animations. Within the Deep Map project, one major research
goal was to realise adaptive positioning, and consequently we
implemented most of the architecture described in the previous
sections.

One specific service provided by the Deep Map system is
the generation of adapted you-are-here maps. In this case, the
user asks for a map of their immediate surroundings, and the
system generates a map of the area, which depicts landmarks as
well as objects that are of interest to the user.1 This application
is an example for the first adaptation strategy: the component
realising it will allocate more resources to improving the quality
of positional information if it is insufficient. More specifically, it
will first request the user’s location based on current sensor data.
If this information is not precise enough to warrant the genera-
tion of a you-are-here map, it will then instruct the positioning
subsystem to apply further means (e. g. inference, interaction)
to position the user more precisely.

Deep Map also provides a service for the localisation of ar-
bitrary objects, where it generates a multi-modal description of
the position of the target object (see Figure 2). This is an ex-
ample for the application of the second adaptation strategy. In
order to compensate for less than desired quality of positional
information, more resources are used to still provide the service
at a high quality. In this case, imprecise positional informa-
tion is accounted for by using induced frames of reference [12].
These frames require the listener/user to first perform a mental
or physical re-location and/or re-orientation before the attached
localisation can be decoded. In the example shown in Figure 2,
the use of an induced frame of reference results in the initial
phrase “If you turn a little bit left”. Hence, the user first has
to perform this operation before being able to understand the
following localisation. As one would expect, the use of induced
frames of reference requires more resources than simply relying
only on direct frames of reference. Thus, the system maintains
its level of service quality by allocating more resources to cope
with low quality positional information.

In order to demonstrate the general feasibility of interactive
positioning, we also implemented an approach based on object
visibility (cf. [13]). Within Deep Map, this process is currently
triggered in the context of the service that generates personalised
you-are-here maps. In case there is no sensor data available at
all, the system will resort to a series of questions about the vis-
ibility of objects that are located somewhere near the last know

1The latter ones are selected according to known interests of the
user as well as their individual interaction history.
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Figure 2: Localising an object using an induced frame of refer-
ence

street the user was on. An underlying matrix linking potential
positions and objects is used to optimised the dialogue in terms
of information gain and shortness. Initial results are promising
as they allowed us, for example, to locate a user to within 10
meters on an urban street of approximately 170 meters length.
This required only three interactions.

5 Related work

Advanced work on location systems focuses on sensor fusion
techniques to improve accuracy and availability of location in-
formation. The Location Stack [9, 11], for example, performs
multi-sensor fusion using Bayesian filtering [8] and adaptive par-
ticle filtering [10]. In addition it provides a uniform programming
interface to applications. While similar in motivation, the adap-
tive positioning framework described in this paper differs in a
number of important respects: rather than fusing sensor data
on a low level, it combines already processed and improved infor-
mation from multiple independent location systems. This allows
the use of specialised and tailored algorithms for each location
system. Second, it provides an explicit quality of service model
rather than a probabilistic one. We claim that this improves the
ease of use from a programmer’s point of view. Third, our frame-
work supports resource-aware adaptation by taking into account
the current status of network and computing resources. Finally,
we are able to integrate interactive positioning as a method of
last resort when there is no direct sensor data available.

Adaptive positioning has also been explored in the context
of mobile navigation systems and tourist guides. The GUIDE
system [6] provides visitors of a city with information adapted

to their interest and location. The system uses a WIFI-based
location system and supports a simple form of interactive posi-
tioning. In the absence of a wireless network connection GUIDE
asks users to identify their position by picking a nearby sight
or prominent building from a list. In a similar way, adaptation
is realised in the LoL@ [2] system. It relies on GPS for posi-
tioning but it has been designed to use the position information
provided by third generation mobile phones. Whenever LoL@ is
unable to precisely determine the user’s current position from
sensor readings, it dynamically creates a list of street segments
and ask the user to select the one they are located on. This list
consists of ranges of house numbers along with the name of the
street.

Human attention and cognitive load are one of the most
important resources when it comes to interactive positioning.
Resource-aware adaptation in the context of cognitive resources
has been explored in the REAL project [4]. The IRREAL system
generate interactive maps of the user’s environment, and selects
the level of detail and scale according to how precisely the user’s
location is known. For example, very coarse information results
in a map that depicts a larger area with few details whereas very
fine-grained information triggers a very detailed map of the im-
mediate environment. The user can also click on specific icons
embedded in the map to tell the system about their current lo-
cation. This information is then used to improve the level of
detail of the map. While all these systems exhibit innovative
resource-aware and interactive position methods, they are miss-
ing a general framework for adaptive positioning. Our approach
provides such a general framework that makes it easy to inte-
grate additional location technologies and to dynamically switch
between them depending on resource availability.

Most positioning technologies deliver data with a specific
quality range. We can make use of this fact by pre-adapting
services to low-precision positional information instead of trying
to pinpoint the user’s position more precisely (cf. e. g. [18]).
This method represents an alternative to resource-adaptive posi-
tioning. However, pre-adaptation restricts the system to a given
quality of service, and thus prevents it from making full use of
better positional information.

6 Conclusion

Location-enhanced services are poised to become the first real-
world example of ubiquitous computing and ambient intelligence.
With so many different location technologies available it is be-
coming important to develop generic frameworks for combining
and integrating them into one coherent system. This is espe-
cially true if one considers the enormous range and variety of
available positioning technologies.

When developing a positioning service for ambient environ-
ments we must aim to maximise service availability in order to
minimise user disruption. To achieve this goal we developed a
framework for adaptive positioning that dynamically and seam-
lessly combines three positioning methods: measurement-based
positioning, inference-based positioning, and interactive posi-
tioning. The framework enabled us to implement an adaptive
positioning service that guarantees that positioning information
is available as long as one of the underlying methods is able
to deliver reliable data. To enable applications (and application
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designers) to influence how adaptation is performed, the service
provides a well-defined quality-of-service interface for specify-
ing the required quality of positioning information. We demon-
strated the feasibility and utility of this approach by describing
a prototype implementation and case study in the context of a
mobile tourist guide.

The work presented in this paper can be extended by making
use of anytime algorithms (cf. e. g. [19]), allowing for an even
finer level of control. We expect that this extension will result in
a system, where an application can assign a certain amount of
resources to positioning, and where the quality of the resulting
location hypothesis directly depends on the amount of resources.

Acknowledgements

The work presented in this article was mainly funded by the
Klaus Tschira Foundation under the grants SISTO and SPACE.
Additional funding was provided by the EPSRC through the RE-
LATE project.

References

[1] Mike Addlesee, Rupert Curwen, Steve Hodges, Joe New-
man, Pete Steggles, Andy Ward, and Andy Hopper. Im-
plementing a sentient computing system. IEEE Computer,
34(8):50–56, 2001.

[2] H. Anegg, H. Kunczier, E. Michlmayr, G. Pospischil,
and M. Umlauft. LoL@: designing a location based
UMTS application. Elektrotechnik und Informationstech-
nik, 119(2):48–51, 2002.
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