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Abstract

Engineering natural and appropriate interactive behaviour in ubiquitous computing
systems presents new challenges to their developers. This paper explores formal
models of interactive behaviour in ubiquitous systems. Of particular interest is the
way that these models may help engineers to visualise the consequences of different
designs. Design options based on a dynamic signage system (GAUDI) are explored
using different instances of a generic model of the system.
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1 Introduction

Ubiquitous computing within a built environment is an important and rapidly
evolving technology for providing information and services to users (for exam-
ple, sporadic visitors or residents). These systems are relatively conventional
within the spectrum of innovations in ubiquitous computing. Nevertheless
they present interesting engineering challenges, particularly in terms of their
impact and usability to the people in the system.

Over the last few years there has been significant development of technolo-
gies, platforms and middlewares that will support these systems. There have
also been valuable ethnographic studies designed to observe the effects that
these technologies have in transforming the working or living arrangements
of those who occupy these spaces. There is however little research devoted
to the issues of engineering these systems, particularly in relation to human
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engagement and experience. While some researchers focus on the technologi-
cal challenges of building sensors, actuators and computing devices that can
be integrated into ‘real’ environments, an equally important aspect relates to
investigating and improving how people engage with these technologies and
how these issues can be understood in the design stages. Users can still find it
difficult to engage and appropriate the supported activities. It is not surpris-
ing therefore that discussion about the definition and the utility of ubiquitous
computing (consider for example [1,2,16]) continues despite many substantial
and significant achievements.

Users of ubiquitous computing systems are typically immersed within them,
surrounded by and affected by their consequences. Although the user might
engage with the environment, the system in which she is embedded makes
assumptions based on where the user is, what she is doing and her personal
tastes. Weiser describes “calm computing” that “weave themselves into the
fabric of everyday life until they are indistinguishable from it” [19]. Others
have used terms like implicit interaction [17] or proactive systems [18] to de-
scribe the potential of these systems to make assumptions about the user.
More recently authors like Rogers [16] have reminded the community of the
importance of engagement commenting that, in reality, systems that antici-
pate the users’ wishes or desires can be controlling or confusing.

Because of the potential complexities of these systems, models are required
to enable designers to consider the implications of choices about styles of
interaction and the effects on action of context. Analysis based on modelling is
required before fielding the system so that design decisions may be considered
early before expensive commitments have been made. This analysis should
consider interaction issues associated with the usability of the system, the
device and the experience that users have of the system. This paper explores
issues of user experience and ease of interaction with the system by addressing:
how to understand novel requirements relating to ubiquitous systems in built
environments; how these are mapped into the design; and how modelling
techniques can be used to explore an option space for the design of the system.
These ideas will be explored by considering a system to provide navigation
support through situated displays.

2 Related work

There are a variety of ways that usability can be explored in ubiquitous com-
puting systems. Analysis may use scenarios aimed at capturing typical or
extreme situations. It may use personas aimed at challenging designer as-
sumptions about who might be using the system. When the user engages with
the system, the effects of the interaction both personally in terms of personal
devices, and publically in terms of shared displays in the built environment,
should be transparent and intuitive. The system should not take the initiative
away from the user in a controlling way. Informal analysis techniques such
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as cognitive walkthrough, co-operative evaluation or heuristic evaluation can
provide useful early feedback of some aspects of the design. However new and
challenging characteristics are of particular relevance in these systems:

(i) how context can change the meaning of the actions [12] in ways that
might confuse users

(ii) how context might trigger changes in the information that flows around
the system

(iii) how the right information reaches the right person at the right time,
without controlling or confusing the user.

A well designed system can create a designed experience for the user. For
example, consider designing an environment in a hospital to allay the anxiety
of an out-patient visiting an unfamiliar hospital, aiming to reach a specified
consulting room for a specific appointment time. Properties such as those
relating to experience can be difficult to analyse. They are critically depen-
dent on physical and textural characteristics only available in the live target
environment. A prototype system explored in the live environment may have
safety or commercial consequences, consider for example a prototype running
in a busy airport. Deploying a system that is close to product when many
downstream design commitments have already been made will be expensive
to redesign.

An important part of requirements elicitation is to establish what scenarios
or personas represent the important characteristics of the design to form the
basis for analysis. This process can be carried out through interview. How-
ever other techniques help to elicit the scenarios that are used. For example,
a richer understanding of the experience that users have may be obtained by
using cultural probes [7] to elicit snapshot experiences. These probes may
be used to discover properties. Tools can be used to check these models to
produce counter-examples that may themselves form the basis for valuable
scenarios. These cultural probes are fragments provided by users that can be
used to help understand experience of an existing system. The aim is that
these snapshots should be used to establish what is required of a new design.
Eliciting snapshots involves subjects collecting material: photographs, notes,
sound recordings, that they believe capture important features of their envi-
ronment. These snippets may make sense as part of a story. The information
gleaned may help understand characteristics of the current system that cut
across a range of scenarios.

A range of formal models can be developed capturing different character-
istics of ubiquitous systems that can be explored either through simulation or
through property checking. This can happen prior to implementing a system
and therefore provide the means to explore, relatively cheaply, alternative
design options. Two key concerns in the modelling process are to identify
relevant properties and to capture aspects relating to the deployment of in-
formation, scheduling of activities, and issues of location.
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The focus of this paper is to explore a particular kind of model that de-
scribes aspects of a user’s implicit action while moving through a built en-
vironment. This space includes public displays, mobile devices and sensors
[8]. Interaction between user and activity may be impacted unexpectedly by
location, the current status of the task at hand and other external effects
generated by the ubiquitous environment. It may be affected by other users
carrying out different tasks. A similar analysis [8] focussed on timing issues, in
particular the timeliness and relevance to person and location of message de-
livery, using the uppaal model checking tool [3]. In the main models are used
to explore the interaction between user and device to characterise and analyse
initialisation, mode confusion and post-completion problems for example, see
for example [12]. It may also be appropriate to explore the way in which in-
formation in the environment provides resources for the user as they carry out
their activities in the style discussed by [4]. To illustrate the proposed style
of analysis we use an example based on a dynamic signage system installed
at Lancaster University. Alternative designs and properties of the system are
explored. The models and properties incorporate simple user assumptions.

3 The GAUDI system

The GAUDI system [10] is designed to help people find their way in a complex
built environment such as a large office building. Static signage and directories
are replaced with dynamic situated displays. The user interface of the imple-
mented system consists of two parts. The interface provided by GAUDI shows
labelled photographs of all the office owners as well as the meeting rooms in
the building on a large touchscreen. A visitor can touch the photograph or
name of the person she wants to visit, which will then initiate navigation sup-
port. Situated displays are arranged throughout the building (similar to the
interactive doorplates described in [9]). When a visitor selects a person to see
on the large touchscreen, all the situated displays in the building will display
arrows. These arrows all point towards the target office. Together they in-
dicate the path a visitor needs to follow to get there. GAUDI will continue
to show these arrows either until the visitor touches the display at her target
location, or until a time out period has expired. GAUDI, in its original form,
may be considered to be calm technology:

• it does not interfere with people’s ‘everyday life’, that is it (subtly) enhances
rather than replaces an existing analogue system

• it can be used without thinking about it, i.e., the only explicit interaction
required is touching a destination (and possibly the display at the target
location)

• it provides support when and where it is needed, e.g., if displays are present
at all decision points.
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A number of simple properties are appropriate for the analysis of the inter-
active behaviour of this system that reflect these characteristics of calmness.

P1: the directions provided will always get the visitor to their required des-
tination subject to simple assumptions about the passenger following the
directions shown on the nearest dynamic sign

P2: the throughput of new visitors who need this facility will be sufficiently
low that the arrival of a new visitor will not have the effect of changing the
route and therefore confusing the visitor currently following the path.

In practice the set of required usability properties are particular to the
application and the domain. They may be derived from users through an
exploration of snapshot experiences as discussed in [8]. Consider the following
plausible example:

S1: photographs produced by subjects of anonymous and narrow corridors
with comments like:
• “It is very easy to lose my bearings in spaces such as this one”
• “When I get lost who do I ask, all the doors are closed?”
• “How near am I to my destination?”

In practice the variety of elicited snapshot experience requires organization to
ensure that subsets of facilities are not neglected. Snapshot experiences may
be used to trigger further narratives. The analyst might enquire of a user who
has generated a snapshot: “Can you think of situations where this particular
feature has been important?” By these means they may inspire a scenario that
would not otherwise have been gathered. These documented experiences can
also be converted into properties that the new design should satisfy. Hence
the comment relating to S1: “It is very easy to lose my bearings in spaces
such as this one” could lead to properties such as:

P3: when a visitor moves into a location where there is more than one possible
exit the sign should indicate the direction which the visitor should travel

P4: it should always be possible to see the next sign in the path

P5: the user should be able to visualise where they have come from and where
they are going to and how far they have got in their journey

P6: if the visitor makes a wrong turn then signs should continue to lead the
visitor to their destination.

The problem with the current version of GAUDI is that if the visitor is
too slow getting to the destination, they will lose the route and be stranded.
A new visitor will have to be told to wait until the delay has completed or
the previous visitor has reached their destination before choosing the room
that they wish to reach. In practice if the delay is long enough and visitors
who are unfamiliar with the environment arrive infrequently enough then this
system will be adequate. However visitors may arrive more frequently than
anticipated or arrive in bursts. The next section explores a model of GAUDI
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like systems that can be used to explore possible alternatives. The aim is to
make this model generic in the sense that it can be used to explore a set of
alternatives.

4 Modelling the System

Alternatives to the GAUDI system may be designed to satisfy desirable prop-
erties more or less effectively. In this study the uppaal system [3] is used to
capture the characteristics of these alternatives. This is partly because it was
envisaged that timing issues would be important in understanding the system
and partly because uppaal provides useful and robust facilities for animating
the system model. In uppaal, processes are modelled as communicating timed
automata and can be animated to explore specific paths based on derived sce-
narios. Properties of the system, such as P1-P6 in the previous section, can
be investigated using model checking techniques. An important focus of these
models is how users interact with the system in terms of the implicit interac-
tions that take place in the built environment. This will be discussed further
in later sections. It must be emphasised that a variety of approaches could
have been used to explore models of these system alternatives. Particular
approaches would have made it easier to capture other aspects of the models.
For example, KLAIM [6] or π calculus [14] would have been more expressive
of location and mobility. While others would have allowed an alternative style
of analysis. For example, PRISM [11] would have made it possible to explore
statistical properties of the system.

The model that is described in this section can be generalised and is poten-
tially relevant to a range of similar types of system involving public displays,
sensors and mobile devices. In principle a generic form of the model may
be tailored to appropriate versions of the system. The model’s structure is
based on a publish-subscribe communication mechanism. A central distrib-
utor broadcasts messages to listening processes (in this system the processes
are either visitors or sensor/displays). The physical and human capabilities
are also defined in the model. The model emulates a two storey building with
a staircase linking the two floors. The space is defined using co-ordinates.
The co-ordinates describe regions of the room rather than points — that area
around the co-ordinate in which the sensor / display recognises the presence
of another device. These regions may be rooms, corridors or staircases. The
model captures the visitor or visitor’s mobile device reading the information
on the sensor / display when in the region of a particular co-ordinate position.

Three versions of the systems are modelled to indicate the range of possible
designs. Each of the designs involves a different degree of explicit interaction.
In the implemented version of the system the only user engagement that can
occur takes place at reception when the visitor selects a destination and at the
destination itself when they press the display at the doorplate having reached
the destination office. The two variations reflect changes in the proactive
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nature of the interaction and the degree of engagement of the users. Version
2 makes the situated displays sensitive to the presence of visitors to avoid the
problem that arises because the frequency of completely novice visitors will
make the one at a time approach of the existing system unacceptable. Version
3 acknowledges the possibility that more than one visitor can be in the same
space at the same time and so supports user initiated action to obtain further
information updates directly to the visitor’s personal device.

4.1 The distributor

Two models for the the distributor were developed. They are presented in
Figure 1 and Figure 2 (state transitions have been labelled to help the de-
scription that follows). The first model (Figure 1) is used to characterise the
distributor of the original version of the GAUDI system (which will be refer-
enced as version 1). The second model (Figure 2) is used to characterise the
distributor of the two additional versions that have been developed (versions
2 and 3).

The distributor has a general format. After initialisation, its behaviour is
triggered by a request (routeup? – 1© in both Figure 1 and Figure 2). In
version 1 the request to the distributor is made when the visitor is in reception.
In the case of versions 2 and 3 (Figure 2) the triggering request occurs when
the sensor / display recognises the presence of the visitor in its space. The
information sent with the request tells the distributor which room number
the visitor is looking for (the room identifier roommsg is used to index route

which is an array of directions holding all the paths along the space – and
select the appropriate route), and which display to use (needed in versions 2
and 3).

As a result of being triggered the distributor broadcasts one or many mes-
sages using the channel mchan 2©. In the case of version 1, messages are sent to
all locations (the process counts through the location values using the variable
xi 3©). On each increment the direction associated with the route at that lo-
cation is sent (using the shared variable xdir = route[roomsg+xi]). In the
case of version 2 and version 3 the routeup? request carries information re-
garding the current position of the visitor using the shared variable xi (room =

xi), and a single message is broadcast using xdir = route[roommsg+room].
These messages are broadcast to all the combined sensor / displays in the sys-
tem. Through shared variables, the messages contain both the direction that
is to be displayed by the display / sensor and a tag (in this case the room)
that is used by the display / sensor to decide whether the message is relevant.

When the distributor has completed distribution (in version 1 Figure 1)
it either waits until a timeout has elapsed (t>=delay) or it is notified by
the visitor that it has arrived arrive? before allowing another to request a
destination. This handover is not required for versions 2 and 3.

The direction information is absolute (North, South, East, West, Up or
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Fig. 1. The GAUDI distributor

Fig. 2. The sensitive distributor

Down). It is assumed that the hand-held device of the visitor could be used
to adjust direction to the orientation of the visitor. This aspect of the design
is not considered in more detail in these models. The implemented version of
GAUDI differs from these models in that each sensor/display holds the whole
route so that if the display is moved to a new location it picks up the new
direction and adjusts itself accordingly. Maintaining multiple copies of arrays
of directions is not an option using the sort of modelling technique described.
Because the time to distribute all the messages for the space is insignificant,
this can be seen as practically equivalent.

4.2 The sensor / display process

A single process is modelled that combines sensor and display. In all versions of
the process, the visitor sends a request to read information (using route? 1©)
and the sensor / display then sends a result (using direct! 2©) which includes
the direction to be displayed contained in shared variable xsign. Version 1
(Figure 3) receives messages from the distributor (via mchan 3©) and updates
its own display using the function updatedisplay(). This function checks
whether the message is relevant to the current location. The visitor can only
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Fig. 3. The combined sensor and display

t<=0

lbutt==butt
route?

lbutt = xbuttdisp=blank

direct!
xsign=disp

routeup!
ybutt=lbutt,
butt=lbutt,
xloc=loc

mchan?
updatedisplay()

Fig. 4. The sensitive sensor and display

read the relevant display when they are “within range of the sensor”. This
is modelled by linking the visitor’s co-ordinate position to a channel that can
be used to communicate with the sensor / display in the visitor’s location if
there is one (see section 4.3).

Version 2 and 3 of the sensor / display includes a further trigger (Figure 4)
that requests an update from the distributor routeup!. The requests include
a message that contains the route number and location of the visitor who
requires the information (ybutt and xloc). As a result of the request this
version of the sensor / display receives a specific broadcast message via mchan

as before.

In summary the display/sensor has three important characteristics.

(i) It knows its location. The relevant direction and route channels that are
used in the mapping of co-ordinates are part of the instantiation of the
process.

(ii) It receives messages from a central server. It filters those messages that
relate to its location.

(iii) It represents an access point for a “mobile” process which communicates
with it. The mobile process calculates the channels from its location.

4.3 The visitor

The visitor process describes simple human characteristics of the visitor as
well as the visitor’s personal device. It knows:
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• its position as defined by an (x, y) co-ordinate

• when it is in the “neighbourhood” of a sensor / display

In version 1 (Figure 5) the visitor communicates its requested route to the
dispatcher using press. This initiates the download of the whole route to the
displays in the space. In all versions the visitor process detects its position
using a function sensorlink() that maps its co-ordinates (initially the visitor
is in the reception area which is on the ground floor, co-ordinates (0, 0)). This
function returns the channel loc that is to be used to communicate with the
nearest sensor / display. If the value returned is NS then there is no nearest
sensor but if there is a sensor, a request is made to the sensor / display
using route[loc]! and the value returned via direct[loc]? is stored in
dir. This direction is used to update the co-ordinates using the function
updatecoord(). The visitor process “remembers” the direction last read if
there is no sensor / display in a given location (i.e., loc has the value NS). The
visitor process follows the direction indicated by the sign (using the function
updatecoord()).

This description of a visitor process captures assumptions about how a
visitor will behave in the environment. Clearly different user assumptions
could be made. For example if a stochastic model like PRISM [11] were used
instead the visitor might remember the direction with a given probability
and in so doing estimates of likely error behaviour could be explored. The
current visitor process makes further assumptions about its movement. The
direction is updated in the obvious way. If the direction is “North” then the y
co-ordinate is incremented, if “West” then the x co-ordinate is decremented.
When the visitor reaches a direction “Down” and is not in a stairwell then
it has reached its destination. If it is in the stairwell on the first floor and it
reads “Down” then it descends to the ground floor and so on.

Further assumptions are made that if the process is likely to hit a wall
then the co-ordinate that would have been updated is unchanged and the
other co-ordinate is updated in the same direction (if the x-co-ordinate was
to be incremented then the y-co-ordinate would be incremented and so on).
This policy works in the present case because sensor / displays are located in
the corners.

In summary the model supports a generic notion of mobility achieved by
relating space to the channels that are used to communicate with the display
/ sensor. The visitor process in addition captures a set of simple assumptions
about the user which can be explored further:

(i) It can read the direction from the sensor display.

(ii) It remembers the direction it has read and continues to use it even when
the display is not visible.

(iii) It moves correctly in response to the direction that has been read.
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arrived

t<=1

loc==NS

sensorlink()

((dir!=down)||(loc==SF))
updatecoord()

(dir==down)&&(loc!=SF)
arrive!

direct[loc]?
dir=xdir

loc!=NS
route[loc]!

press!
xi=i

initsenschans()

Fig. 5. The visitor

arrived

loc==NS

sensorlink()

((dir!=down)||(loc==SF))
updatecoord()

(dir==down)&&(loc!=SF)

direct[loc]?
dir=xdir

loc!=NS
route[loc]!
xbutt=bp

initsenschans()

Fig. 6. The visitor who can elect to receive a direction

Each of these elements could be manipulated and could be used as mechanisms
for exploring user errors. Alternative or further assumptions could equally
be made, for example about what visitors do when there is a possibility of
collision.

All models use the same floor layout which is different from Lancaster
University but is of similar complexity. Version 2 of the system assumes
that the sensor is sensitive to the visitor’s position and therefore the visitor
variant sends the route each time (Figure 6). The third version of the model
performs the same activity as the second except that the elective refreshing
of the visitor’s handheld display is also modelled. An additional unlabelled
branch in the model specifies the possibility that the visitor does not request
an update to its display. In this case direction information used by visitor
is determined by the last request that was made by the visitor (this happens
non-deterministically in the model). Hence if the user “forgets” to update the
display it will continue to use a prior direction even though it could have been
updated through a visitor’s request.
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arrived

loc==NS

sensorlink()

((dir!=down)||(loc==SF))
updatecoord()

(dir==down)&&(loc!=SF)

direct[loc]?
dir=xdir

loc!=NS
route[loc]!
xbutt=bp

initsenschans()

Fig. 7. The explicit visitor process

5 Evaluation

Modelling the system allows exploration of the implications of alternative
designs by exploring sequences of modelled states. These state sequences can
be thought of as paths that provide the basis for scenarios. There is no space
for detailed analysis of the system. Instead the three types of activity that
were carried out are briefly described.

5.1 Scenario exploration

The model provides a framework within which specific scenarios can be ex-
plored. Scenarios that have been gathered through a process of interviewing
users may be “stripped down” to steps in the model. When animated, the
steps taken within the model may be understood and visualised by the analyst
in the broader context of the physical textures, siting of displays and other
features of the real system. Hence the model animation is used as a trigger
for the domain specialist to rehearse and to visualise what the designed sys-
tem would be like. The model generates questions for the designer about the
choices that have been made. These questions can be explored and discussed
with a usability specialist or even re-expressed as a narrative that could be
of value to explore with users and to allow them to experience the properties
that are important.

Additionally, when properties fail in uppaal, a trace is provided by the tool.
These traces need to be explored (sometimes extended) through animation in
order to build an understanding of the root of the problem being highlighted.

5.2 Property exploration

The model provides a basis for exploring properties. They may be automat-
ically checked against the properties derived as important either by identify-
ing snapshot experiences or other properties of the system. This process of
property checking may generate traces that would form the basis for further
scenarios [5]. Hence for example the version of these models that were used for
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checking properties included specific timing information. This was to ensure
that the system would not dwell endlessly at a particular state. The following
properties have been checked.

• Reachability: checking that the model behaves in a way that is consistent
with the proposed system. For example that the user will arrive at the
required destination if they follow the signs. This can be achieved using
properties such as A<>(P1.dir==down)&&(P1.loc!=SF), that the visitor
(P1) will always reach a location that is not the stairwell where the direction
of the display is down. Note that timing in the particular model used was
designed so that the model always progresses because without it it is always
possible that the process can dwell in a state forever and therefore fail to
reach its destination.

• Visibility: checking that there is always another sign in the line of sight
of the current display in the direction that the visitor should travel. This
is achieved by adding an observer process, see below, and checking that a
variable that is set each change of position to ensure that the next display
is in sight is always true.

It is also possible to use this model to check security and privacy properties,
for example to check that the public display closest to the user can never
combine with information displayed on the user’s personal device to betray
private information about another user.

Situations where a property breaks can be at least as interesting as whether
the property is satisfied. Counter-examples may demonstrate failures in the
system but they may also indicate situations where properties of the informa-
tion may not be satisfied but may be unproblematic from a usability point
of view. Alternative models that make different assumptions about visitor
dwell time will enable the exploration of counter-examples where visitors might
spend longer than expected reading displays and travelling between locations.
These counter-examples to properties may be used as the basis for scenarios.

5.3 Observer processes

Observer processes provide further opportunities to check properties of the
system. They can be used to act like observational scientists spotting in-
teresting events and calculating whether these events have properties in the
context of the ongoing execution of the system. Hence for example an ob-
server was used to check whether a visitor can always see the next sign in
the direction of the arrow that is on the nearest sensor / display. In order
to achieve this the observer process is signalled each time a visitor reaches
a new location, and a message is sent to the observer giving the direction it
reads from the sensor / display and the visitor’s destination. The observer
uses this information to calculate from the current location whether there is
a straight line in terms of the (x, y) co-ordinates to another sensor / display.
The observer sets a variable depending on whether the display can be found.
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Other examples of observer processes are described in [8].

6 Discussion and Conclusions

An important benefit of formal modelling of human interactions in ubiquitous
systems is the ability to evaluate user characteristics prior to building the sys-
tem. This applies both to testing whether user requirements are met in a
particular model and to improving a model iteratively so that it eventually
meets the set requirements. This may enable developers to modify the cur-
rent design/model in a targetted way and speed up the development process.
Another benefit is that the elicited traces are gathered by a formal process
and therefore the designer can be quite clear why the scenario based on the
trace is of interest.

One potential disadvantage of the proposed approach relates to scalability.
While there are no inherent limitations, it is possible that models become too
complex to fully check them within reasonable time or memory limits. This
can result either from poor modelling (e.g., using the wrong abstractions) or
the fact that the model requires multiple instances of the same process. Ways
to overcome this particular problem include the use of multiple, smaller models
(potentially at the expense of being able to prove certain properties for the
entire system) or multi-tiered models with several layers of abstraction.

A second issue is the mapping between informal usability requirements,
the model and the implementation of the system. In order for the model to
have any value, it needs to be tightly linked to the system implementation,
i.e., the system needs to implement the model. Similarly, the formal require-
ments used to check against the formal model need to accurately represent
the requirements identified in the elicitation phase. Potential solutions to
these issues include formal and/or (semi-)automatic processes to derive an
executable implementation from the formal model or tools supporting both
processes (compare for example, [13,15]).

Finally, creating, evaluating and modifying a formal model of a ubiquitous
system introduces a further step into the development process, which can
incur increased costs and lengthen the time to completion of a project. In
addition, formal modelling may require a different set of skills from developers,
which may have the same effect. This issue is however counterbalanced by the
advantages listed above as well as by the potential savings resulting from
identifying problems early on in the development process.

The main value of uppaal was through its provision of animation facil-
ities and time. The modelling technique makes it necessary to use rather
complicated “patterns” to capture communication and to support mobility.
Another problem with the techniques is that there are no clear pathways to-
wards stochastic modelling. Questions remain about whether modelling such
as this will require not only consistent families of model but also a variety of
modelling techniques.
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By making interaction requirements explicit, modelling can also pave the
way to define more clearly what is meant by ‘calm computing’ in the context
of a particular system. The next step is to integrate and use the approach
described in this paper in the context of a larger and more complex project.
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Michael Harrison and José Creissac Campos acknowledge with thanks EPSRC
grant EP/F01404X/1 and FCT/FEDER grant POSC/EIA/56646/2004.

References

[1] G.D. Abowd and E.D. Mynatt. Charting past, present and future research in
ubiquitous computing. ACM Transactions on Computer-Human Interaction,
7(1):29–58, 2000.

[2] Gregory D. Abowd, Elizabeth D. Mynatt, and Tom Rodden. The human
experience. Pervasive Computing Magazine, 1(1):48–57, 2002.

[3] G. Behrmann, A. David, and K.G. Larsen. A tutorial on uppaal. In
M. Bernardo and F. Corradini, editors, Formal methods for the design of real-
time systems, number 3185 in Springer Lecture Notes in Computer Science,
pages 200–236. Springer-Verlag, 2004.

[4] J.C. Campos and G. Doherty. Supporting resource-based analysis of task
information needs. In S. Gilroy and M.D. Harrison, editors, Interactive Systems:
Design, Specification and Verification 12th International Workshop, DSVIS
2005, Newcastle upon Tyne, UK, July 2005, number 3941 in Springer Lecture
Notes in Computer Science, pages 188–200. Springer-Verlag, 2006.

[5] J.C. Campos and M.D. Harrison. Model checking interactor specifications.
Automated Software Engineering, 8:275–310, 2001.

[6] R. De, Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: a kernel language for
agents interaction and mobility. IEEE Transactions on Software Engineering,
24(5):315–330, 1998.

[7] W. Gaver, T. Dunne, and E. Pacenti. Design: cultural probes. ACM
Interactions, 6(1):21–29, 1999.

[8] M.D. Harrison, C. Kray, Z. Sun, and H. Zhang. Factoring user experience into
the design of ambient and mobile systems. In G van de Veer, P Palanque,
and J. Wesson, editors, Engineering Interactive Systems, 2007. accepted for
publication, Springer Lecture Notes in Computer Science.

[9] C. Kray, K. Cheverst, D. Fitton, C. Sas, M. Patterson, J.and Rouncefield, and
C. Stahl. Sharing control of dispersed situated displays between nomadic and
residential users. In Proceedings of MobileHCI’06, Espoo, Finland, September
2006.

15



Harrison, Kray, Campos

[10] Christian Kray, Gerd Kortuem, and Antonio Krüger. Adaptive navigation
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