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ABSTRACT

This paper presents RAJA | a Resource-Adaptive Java Agent
Infrastructure. RAJA is easily accessible to agent devel-
opers, since it allows structured programming by using a
multi-level architecture to clearly separate domain-specific
functionality from resource and adaptation concerns. It is
generic, since it is applicable to a wide range of adaptation
strategies. These two key features are illustrated by several
applications, where the RAJA concept has been successfully
applied to solve real world problems. They stem from very
different domains (video streaming and spatial reasoning),
which demonstrates the wide range of application and the
flexibility of the proposed infrastructure.

1. INTRODUCTION

The trend of decentralized computing is a continuous phe-
nomenon in information technology. In the early stages,
main-frame computers were replaced by desktop computers,
and more recently mobile computers that are still gaining
popular are already being confronted by two new paradigms:
pervasive [29] and wearable (mobile) computing [13].

The basic idea behind these approaches is that the phys-
ical environment is augmented with embedded computing
and communication devices. Situated in such an environ-
ment, users might interact with hundreds of computers at a
time, a number of which they might be carrying around with
them. Moreover, they may move around and thus experience
a highly dynamic environment. In this scenario, interaction
and computation become quite dynamic and complex: soft-
ware agents move along a global network, compete over and
bargain for limited resources, and have to adapt to rapidly
changing resource availability (e.g. computing power or net-
work bandwidth). Thus, in order to work properly, and
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to guarantee a certain level of real-time requirements and
quality of service (QoS), applications (or software agents)
are required to continuously adapt to the current resource
situation. This includes, for example, adjusting resource
demands dynamically using multi-fidelity[26], anytime algo-
rithms, or by migrating to more powerful sites if minimum
requirements cannot be fulfilled at the current location.

The agent paradigm has emerged as one of the most
promising approaches to address the challenges of pervasive
and mobile applications in highly dynamic and complex en-
vironments. Even though there is no general agreement on
a single definition of what an agent is, the following is the
one most suitable in our context [30]:

An agent is a computer system that is situ-
ated in some environment, and that is capable of
autonomous action in this environment in order
to meet its design objectives.

An agent perceives its (changing) environment and is able
to act without the intervention of humans or other systems.
Especially by exploiting parallelism, distribution and mobil-
ity, multi-agent systems (MAS) promise to be more powerful
and efficient than conventional programs [2], e.g. by making
better use of available resources.

In the context of pervasive and mobile computing, a num-
ber of middleware systems (not necessarily agent-based) for
resource-adaptive applications have been developed. How-
ever, most of them are limited to a small set of specific adap-
tation strategies. We consider the challenge of designing a
new agent infrastructurel for resource-adaptive applications
matching the following requirements: First of all, it should
be generic, i.e., independent of a particular adaptation strat-
egy and thus be able to support a broad range of adaptation
strategies. These strategies can range from applying multi-
fidelity, anytime algorithms, exploiting the advantages of
distributed systems using load balancing and agent mobil-
ity to more elaborate strategies. Secondly, it should support
both resource-adaptive and resource-unaware applications.
Thirdly, it should be easily accessible to agent developers
and allow structured programming of adaptive systems.

The remainder of this paper is organized as follows. We
first describe related work in the fields of agent infrastruc-
tures and resource-awareness. Section 3 gives a detailed

! According to Shehory [27] a (multi-)agent infrastructure
describes both the agent internal architecture and the multi-
agent organization, and the dependencies between the two.



presentation of our novel agent infrastructure for resource-
adaptive systems, RAJA. Then, we give a more detailed
description of the underlying implementation and its philos-
ophy (section 4). In section 5, we present three examples of
resource-adaptive applications, which were developed using
RAJA. In section 6, we compare RAJA with other systems.
In the concluding section, we sum up the main characteris-
tics of our concept, and point out future research directions.

2. RELATED WORK

KQML [7] and FIPA specifications [8] are standardization
approaches for the interoperability of multi-agent systems.
Since then a number of agent infrastructures, which provide
tools for building agents and enabling them to communicate
via the KQML or the FIPA agent communication language
have been developed. Examples are the KQML-compliant
Jackal [4] and JATLite [16] as well as the FIPA-compliant
JADE [3] and FIPA-OS [9]). RAJA can be viewed as an
extension of them, which additionally supports resource-
adaptivity. Actually, the current RAJA infrastructure is
implemented on top of JADE and FIPA-OS (see section 4).

In order to support mobile computing, the FIPA 2000
specification [10] includes an ontology for representing the
quality of service of the message transport service and two
additional system agents: a Monitor Agent and a Control
Agent. The Monitor Agent measures the quality of service of
a message transport service, collects information from other
measuring sources in a repository, and performs first level
analysis of the collected data. The Control Agent (CA) con-
trols a message transport connection and selects a message
transport protocol using negotiation with other CAs. Agent-
based adaptation is achieved by negotiating message trans-
port requirements such as transport protocols or message
representation. Implementing RAJA on top of a FIPA 2000-
compliant software would allow it to benefit from these ser-
vices. However, adaptation supported by RAJA is beyond
this “technical level”, i.e., physical layer of message trans-
port.

DECAF (Distributed Environment Centered Agent
Framework) is a modular platform for the rapid design,
development, and execution of intelligent agents [14]. It
provides a range of architectural services such as commu-
nication, planning, scheduling, execution monitoring, and
coordination. The framework supports different types of
adaptation including organizational, planning, scheduling,
and execution-time adaptation [5]. The current implemen-
tation of RAJA supports organizational and execution-time
adaptation. The flexibility of our infrastructure, however,
allows for its extension to support other types of adaptation
(see section 7).

The Odyssey architecture consists of a set of extensions
to operating systems to support mobile, adaptive informa-
tion access applications [23, 22]. Its central idea is that the
system monitors resource availability, notifies applications
of the relevant changes (through upcalls), and enforces re-
source control. This extended system-level functionality is
embedded inside a component called viceroy. Odyssey’s ap-
proach to adaptation is to adjust the fidelity of accessed data
to match available resources. Wardens are the components,
which manage data type-specific information (e.g. available
fidelity levels of a specific data type). Viceroy and wardens
communicate through method calls and shared data struc-
tures. In this library-based approach each resource-adaptive

application is incorporated with a warden. When notified
(by upcalls), an application chooses a fidelity level from a
range of levels offered by the warden.

Agilos is a middleware framework for quality of service
adaptation, which is achieved in two levels through the com-
ponents adaptor and configurator [17, 18]. At the system-
level, each adaptor is responsible for a specific type of re-
source, e.g. CPU or network bandwidth. It ensures a fair
and stable distribution of the available resources among con-
current applications. At the application-level, each con-
figurator only serves one application. It takes knowledge
about applications into account and maps adaptation deci-
sions made by the adaptor to application-specific parameter-
tuning or reconfiguration choices within the application.

The TLAM (Two Level Actor Machine) meta-architecture
for open distributed systems is composed of base actors and
meta actors [28]. Meta actors are part of the runtime system
which provide a set of core services for distributed systems.
These are, for example, communication, resource manage-
ment, remote creation, migration, load balancing, schedul-
ing, synchronization, and replication. A meta actor can ac-
cess and modify information within a base actor.

While there are many different approaches to resource-
adaptation, the term resource itself also has many-sided
meanings: It is a key concept in the context of bounded op-
timality [25]. It is not restricted to physical system resources
such as CPU performance or memory and network capacity,
but also covers, for example, users’ resources like time con-
straints, working-memory load, emotion, or state of health.
In addition, there are situational/conteztual resources deter-
mined e.g. by the users’ location and their social environ-
ment. The project Resource-adaptive cognitive process [15]
investigates the adaptation of cognitive processes to limited
resources, whereby its focus is on wuser-oriented resource-
adaptivity. A user’s time constraints and working memory
limits are treated as key resources, whose limitations are
recognized on the basis of the user’s behavior. A system
takes them into account and adapts its own behaviour ac-
cordingly. We concentrate primarily on system resources.
However, the RAJA infrastructure is flexible to also sup-
port adaptivity for other kinds of resources (see example in
section 5.3).

3. THE RAJA AGENT INFRASTRUCTURE

RAJA is a multi-level agent architecture (see figure 1).
At the application-level basis agents model domain-specific
application functionality. Each of them can directly con-
tact any of the other basis agents via message passing. At
the system-level meta agents are part of the agent infras-
tructure. They provide system-level services (see section
3.2) to basis agents as well as to other meta agents. Meta
agents communicate with each other via message passing
just like basis agents. Unlike the meta actors in the TLAM
model they do not directly examine and modify the state of
the basis agents, which can only be done indirectly through
controllers. A controller is attached to a resource-adaptive
basis agent, while a resource-unaware basis agent does not
have a controller. In its role a controller is comparable
to an application-specific configurator in the Agilos middle-
ware. In the following we give a detailed presentation of
the RAJA infrastructure components and the interactions
among them.
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Figure 1: A reflective multi-level architecture
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3.1 Basisagents

While a basis agent performs (resource-unaware) domain-
specific computation to produce certain application function-
ality, its attached controller performs reflective computation
[19] about the basis agent, more precisely, about the domain-
specific computation the basis agent performs. Examples
of reflective computations are monitoring of performance,
(e.g., execution time or result quality), monitoring of re-
source consumption, and computation of adaptation deci-
sion (e.g., which parameter or configuration should the ap-
plication computation run with next and where should it
run). Thus reflective computation can be both merely pas-
sive, e.g., the task of monitoring, and active, i.e., it influ-
ences or controls the application computation. Due to the
separation between basis agents and their controllers (each
controller is run in a separate thread) parallel execution of
application and reflective computation can be achieved.

In order to make application-tailored adaptation decisions
a controller needs to have knowledge about the individual
application. For example, video data can be compressed us-
ing different compression algorithms and in different quali-
ties. Each controller has knowledge about the dependency
between the application parameters. In speech recognition,
for example, the parameter recording quality of speech varies
with the parameter surrounding moise level. A controller
also needs to understand the relationship between applica-
tion parameters and resource consumption. This means, for
example in the context of speech recognition, knowing that
bad recording quality implies more CPU consumption than
usual. Through runtime monitoring the dependency and
relationship can be more precisely expressed by numerical
values. This knowledge, which is represented by numerical
dependency profiles, forms the decision base for controllers
to make a proper adaptation decision (e.g. how to tune a
certain application parameter) under the prevailing resource
availability. Sophisticated learning methods such as perfor-
mance profiling [31] could also be deployed in the decision-
making process.

3.2 Meta agents

It is desirable that a multi-agent system provides a wide
range of infrastructure services. Existing specifications such
as KQML and FIPA do not address the aspect of resource-
adaptivity (FIPA 2000 [10] does but only to a limited ex-
tent). FIPA specifications consider the interoperability of
agents and define agent management services, which include
the creation and deletion of agents, “yellow-page” directory
services for agents to register their services, query services

offered by other agents, and routing of messages between
agents. RAJA enhances a FIPA-compliant MAS by addi-
tionally addressing resource management services offered by
a group of meta agents. They are:

e A Resource Monitor is replicated for each comput-
ing/commuication site. It records the availability of
local resources, which range from CPU power and net-
work bandwidth to I/O facilities such as displays and
printers.

e A Load Balancer acquires load information of the ba-
sis agents from their controllers and decides where to
perform a pending task (see example in section 5.2).

o A Remote Ezecution carries out the decisions of Load
Balancer by transferring the pending task to a remote
basis agent.

e A Scheduler determines the activation order of basis
agents in order to achieve certain goals (see section 7).

The RAJA infrastructure provides a set of predefined
meta agents. Additionally, it provides tools for agent de-
velopers to design and implement their own meta agents
(see section 4) whose services can be shared among the ba-
sis agents.

3.3 Interactions

Interactions between a basis agent and its controller are
achieved through method invocation (from basis agent to
controller) or upcalls (from controller to basis agent). For
example, a basis agent invokes a method of its controller
whenever it has several alternatives to assign an application
parameter to continue its domain-specific computation. The
controller is asked to make a recommendation according to
the actual resource availability. Either the controller can
make the decision locally or it must request services of some
meta agents.

Interactions between controllers on behalf of their basis
agents and meta agents are achieved by message passing.
Requests for meta agent services are sent to the service-
offering meta agents, which in return reply with messages.
The interaction can follow different interaction protocols
(e.g. FIPA-request or FIPA-query protocol [8]), which are
determined by the particular service requested. A controller
retrieves answers from the replies, makes some application-
specific adaptation decisions based on them, and then re-
turns a recommendation to its basis agent.

An adaptation process can be initiated either by a basis
agent ezplicitly (explicit reflection [19]), or by its controller,
or a meta agent implicitly (implicit reflection [19]). A basis
agent explicitly activates an adaptation, once its method
call to its controller returns. An adaptation process will
implicitly be invoked by upcalls to the basis agent, once
the controller has observed some substantial performance
changes of the basis agent or a meta agent has reported
some resource changes to the controller.

4. IMPLEMENTATION

The RAJA agent infrastructure provides a set of Java
classes, which can be extended to develop resource-adaptive
agents [6]. In the following we outline the classes
BasisAgent, Controller and MetaAgent for the components



basis agent, controller and meta agent respectively. The
basis class BasisAgent offers a number of methods for agents
to

o perform agent management functions with FIPA sys-
tem agents such as the Agent Management System,
the Agent Communication Channel, and the Directory
Facilitator.

e communicate via message passing. Convenient meth-
ods are available to create new messages and reply
messages, and to send and receive them. In RAJA
there are two ways to handle incoming messages for a
basis agent. They can either be kept in a local mes-
sage queue waiting for retrieval by the basis agent,
which explicitely calls the method receiveMessage or
blockingReceiveMessage, or they can be forwarded
by RAJA to some dedicated message handlers, which
have been specified by the agent developers.

e specify their task structure. The functionality of a
basis agent can be divided into a number of sequen-
tial or parallel tasks, where each task can be further
subdivided into sub-tasks. The task structure can be
both linear and non-linear (e.g. a task structure with
branches). With RAJA it can be defined at runtime
by dynamically adding and removing (sub-)tasks.

e benefit from agent mobility. Questions like “Where
am I”, “Where is agent A” or “Which are the avail-
able sites to which I can move” can be answered using
method calls to the RAJA runtime system.

Each meta agent offers a couple of services. The basis
class MetaAgent provides methods for meta agents to spec-
ify their services, which are derived from MetaAgentAction
(e.g., the name and actor of each service and the interaction
protocol it follows will be specified). Further methods exist
for registering the associtated tasks, which implement the
functionality of these services. Each meta agent is equipped
with a dispatcher by the RAJA infrastructure, which re-
ceives messages addressed to its meta agent, retrieves the
requested actions from the message content, activates the ac-
tions and eventually sends away the results according to the
currently active interaction protocol. Programmers of meta
agents are completely relieved from the burden of message
handling. They merely write the code which implements the
actual action to be undertaken by the meta agent in order
to satisfy the requests.

Whenever called by its basis agent, a controller checks
if it can return a result locally. If not, it instantiates a
corresponding MetaAgentAction and starts the interaction
with the service-providing meta agent by calling a method
provided by the basis class Controller. The instantiated
MetaAgentAction will then be included into a request mes-
sage and forwarded to the dedicated meta agent by the
RAJA infrastructure. As in the case of meta agents, the
RAJA infrastructure provides each controller with a dis-
patcher, which receives messages from meta agents and au-
tomatically activates the code, which operates on the replies
from the meta agents.

To hide communication latency and enable parallelism,
a basis agent can specify whether it wants to wait for the
completion of an interaction between its controller and some

meta agents blockingly. If it does not, the basis agent contin-
ues its domain-specific computation while its controller and
some meta agents process its request. RAJA methods are
available for basis agents to test and wait for the completion
of an interaction.

A number of FIPA implementations are available nowa-
days [11]. To save programming cost we intended to im-
plement our RAJA infrastructure on top of those. After
evaluating several of them we chose the JADE Framework
[3] and FIPA-OS [9] as testbed and implemented RAJA-
JADE and RAJA-FIPA-OS respectively. Some methods
of JADE/FIPA-OS can almost directly be used for basis
agents. Others are used as base for the RAJA methods
which have a higher abstraction. In general, the RAJA API
follows the FIPA notation to ensure that RAJA can be easily
ported to other FIPA implementations. In order to provide
as much portability of the code implemented using RAJA as
possible, useful concepts, which are contained in one FIPA
implementation (e.g. FIPA-OS) but not in the other (e.g.
JADE), have been simulated in RAJA. However, it seems to
be impossible to design a totally unified RAJA API, which
hides all the differences of the key concepts of the underlying
FIPA implementations. For example, the concept of agent
tasks of RAJA must be mapped onto the multitasking model
of JADE and the multithreading model of FIPA-OS respec-
tively. The difference of these two models is now visible
to the programmers through the RAJA API. Moreover, the
current RAJA implementations support the interoperability
of agent platforms which is the objective of the initiative
Agentcities [1]. Agents developed under RAJA-JADE and
RAJA-FIPA-OS are able to communicate with each other.

5. APPLICATIONS

An agent infrastructure lives with the services it can pro-
vide and the applications it has been used to support. We
have implemented the meta agents Resource Monitor, Load
Balancer and Remote Ezecutor and used them in developing
the following resource-adaptive applications.

5.1 Multi-fidelity video streaming

The architecture of a resource-adaptive video streaming
application which transfers videos at different levels of fi-
delity according to the available resources is illustrated in
figure 2.

Video Player { request, resourceDest ) Video Server
MOVIE ey,

« monitaring
T available fidelities:

=notifyStop « B
Controller = JFEG ()
= JPEG
-updateResource )
-getResaurce .
l -notifyChange adaptation: B

fickelity = Favail. resources,
avail. fidelites) |—

Figure 2: Multi-fidelity video streaming

The video server keeps each movie in several pre-
computed versions, which differ in their level of fidelity and



thus their bandwidth demand. The real availability of band-
width between the video player and the server can be indi-
rectly measured in frame loss rate, which increases with the
declining availability of bandwidth. The video player at-
taches each request for a movie with a resource description
(resourceDesc), which describes e.g. the local display ca-
pability and the estimated available bandwidth (see figure
3). This information is kept by the meta agent, the local
Resource Monitor, and can be accessed through controllers
(getResource). The video server sends the movie with the
level of fidelity it chose according to the resource description.
During the video steaming process the controller of the video
player monitors the frame loss rate. Once a certain threshold
is exceeded, it estimates the availability of bandwidth and
informs the fact both to its basis agent (notifyStop) and to
the Resource Monitor (updateResource). When notified the
basis agent sends a new request which contains an updated
resource description to the video server. The video server is
asked to stop the current transmission and send the movie
at an adapted level of fidelity from now on. The Resource
Monitor should be notified by the controller to ensure that
the up-to-date resource information can be shared among
the basis agents located on the same site.

<?xml version=’1.0’7> <ResourceDescription>
<Bandwith>

5.2 Transparent load balancing

Dynamic load balancing has often been used to minimize
the execution time of single tasks and the overall through-
put in parallel and distributed systems. Under RAJA a
resource-unaware agent becomes a load-balanced agent al-
most transparently: The default controller provided by the
RAJA infrastructure is able to

e monitor the load of its basis agent,

e inform the meta agent Load Balancer of the load
changes (e.g. from normal to overload and vice versa,
or from normal to underload and vice versa),

o find with the help of the Load Balancer the most suit-
able agent, which can handle the pending request in
case of local overload, and

e subsequently contact the meta agent Remote Ezecutor
to transfer the pending request.

This process is totally encapsulated inside the default con-
troller and happens automatically without interfering with
the basis agents. However, agent developers have the possi-
bility to deactivate this feature, if load balancing and remote
execution are not desirable. The definition of over- and un-
derload thresholds is highly application-dependent. RAJA

<BytesPerSecond reliable=’yes’>10000</BytesPerSecond>provides agent developers with methods to explicitly specify

</Bandwith>
<CPU> <mips>1,34</mips> </CPU>
<Audio supported=’no’> </Audio>

<Video>
<fps min=’10’ max=’50’ default=’30’/>
<resX>1024</resX>
<resY>768</resY>
<numColors>65536</numColors>
</Video>

</ResourceDescription>

Figure 3: Resource description in XML-syntax

In the description above, the video server decides for a fi-
delity level according to the prevailing resource availability.
This is the most natural way, because among all the compo-
nents it has the most exact knowledge about the available
fidelity levels. However, it is also possible, that the con-
troller of the video player itself or with the help of a meta
agent, which is specialized in video applications, makes the
decision. All the variants can be easily realized with RAJA
and additionally, the decision for one of the variants needs
not be made at build time but can be made dynamically at
runtime. This emphasizes the flexibility of our infrastructure
design.

We have implemented a video client and a video server
agent to stream MPEG movies, whereby the Berkeley
MPEG Player mpeg_play [21] has been used to display the
movies. The controller at the client side intercepts the re-
ceived MPEG stream and calculates the frame loss rate.

initial values for them. During runtime the controller could
learn the ideal values based on the monitored performance
behaviour and adjust them dynamically. Figure 4 shows the
sample code a load balanced video server agent.

public class VideoServer extends BasisAgent {

public VideoServer ( ) {
super ();

// Express the wish of load balancing and

// set the initial values for under- and overload
// using the class ResourceAwarenessConfiguration
ResourceAwarenessConfiguration myConfig =

new ResourceAwarenessConfiguration ();
myConfig.setLoadBalancing ( true );
myConfig.setLoadThreshold ( 1, 5 );
setResourceAwarenessConfiguration ( myConfig );

// Initiate an instance of the default controller
// and attach it to the video server
myController = new Controller ( this );

attachController ( myController );
}

public void startAgent () {
// core functionality of the video server

}

Figure 4: A load balanced video server agent

The working principle of a load balanced video stream-
ing using RAJA is outlined in figure 5. The video server
is replicated as server A and B. Once the number of wait-
ing requests exceeds the overload threshold by a newly in-
coming request (in figure 5 it is symbolized by the hatched



square assigned to the server A), the controller is triggered
to perform some load balancing execution. It informs the
meta agent Load Balancer of the actual local load of video
server A (updateLoadInfo) and asks for a video server which
can satisfy the request instead of server A. Based on the
gathered load information and some load balancing algo-
rithms Load Balancer finds the most suitable video server,
e.g. the underloaded video server B, and answers with its
name. Upon getting the answer from Load Balancer the con-
troller sends the new request, together with the name of the
remote executor, to the meta agent Remote Ezecution. The
task of this meta agent is to modify the request, such that
the remote executor finds it in the form as if it were directly
addressed to it, and to forward the request to the actual re-
mote executor. It is also possible that the new request must
be performed by the server A, because the communication
cost and the waiting time at a remote server fully nullify the
potential saving by a remote execution.

new request | Wideo Server A Video Server B

EAZZ77 -,
N overload
Y|
underload
Controller Controller
=remoteExecution
-updateloadinfo -
-InanBalancing? 7

Remote Execution

Load Balancer

Figure 5: Load balanced video streaming

5.3 A spatial reasoning engine

In the context of the mobile tourist guide Deep Map [20],
a component for spatial reasoning SpaCE (Spatial Cogni-
tion Engine) was developed, which is currently being ported
to RAJA. Deep Map is a multi-agent system, and therefore,
SpaCE as part of the system, was designed as an agent.
Even more, it is a multi-agent system of it’s own, or a
so called holon [12] consisting of several autonomous sub-
agents, which cooperate in order to solve spatial reasoning
problems. This nested or holonic architecture was chosen
because there are many (concurrent) processes involved in
spatial reasoning, which interact to solve a specific prob-
lem. Figure 6 illustrates the logical architecture of SpaCE,
which consists of several sub-tasks, for example, Relations
or Identification.

SpaCE makes a good example for a complex agent that
might require a great deal of resources, but does also allow
for many different resource adaptation strategies to be ap-
plied in its sub-tasks. In order to provide a user with easily
understandable spatial descriptions and to properly analyze
his utterances, extended regions of a detailed world model
must be searched, user and context models should be taken
into account, and large databases have to be queried for
information about the objects found in the model. Further-
more, there are many geometrical computations which must
be performed for each object involved.

Since the user expects a reply within a reasonably short
time and with a reasonable quality, resource considerations

Basis Agent
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+ amount of information
adjust computational method
= level of granularity
quality threshold
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Figure 6: Logical architecture of SpaCE

play an important role in this context. SpaCE was origi-
nally implemented on top of a custom FIPA-based middle-
ware written in Java, which does not provide resource han-
dling. Since there is no information on available bandwidth
or computational resources, the agent cannot reason about
these important factors properly.

Moreover, SpaCE is already very complex even without
resource-awareness (e.g. interacting, concurrent processes;
multi-factorial object evaluation; etc). Mixing reasoning
about resources and adaptation strategies with the core
functionality would require a great effort and also make the
software too complex to maintain or extend. Using RAJA as
middleware, these problems can be avoided and we can take
full advantage of the conceptual separation between domain-
specific computation and resource reasoning. In leaving the
spatial reasoning components of SpaCE mostly unchanged
and realizing them as a basis agent, resource adaptation
strategies and reasoning can be implemented within the cor-
responding controller (see figure 6).

Since there are many resources that can be identified in
this context, fine-grained adaptation strategies can be for-
mulated. Aside from the overall response time, there are
other important resources: the available bandwidth, the
computational power available, and the number of agent
instances that can be created (e.g. in order to simultane-
ously evaluate several objects). To adapt to the changing
availability of resources, an agent doing spatial reasoning
has several options. It can e.g.

e adjust the level of object abstraction, which it uses to
compute spatial relations. Depending e.g. on the avail-
able bandwidth, objects can either be abstracted to
a single point, its bounding rectangle, its outline, its
bounding box, or it can be analyzed using a full fledged
3D model.

o adapt the amount of information, which is taken into
account when evaluating different objects. This can
range from none to all available information, including
e.g. color, function, historical data, etc.

o select different computational methods, that are used
to establish e.g. spatial relations. This includes purely
qualitative calculi, simple region-based reasoning, ex-
haustive quantitative analysis etc.



e choose a level of granularity, which forms the start-
ing point for the analysis. By adjusting this factor,
the reasoning can be performed either very roughly, or
very precisely, or at several levels inbetween.

o vary the threshold value for acceptable results, thereby
either speeding up the computation (if the threshold
is set to a low value), or yielding high quality results
(if it is set to a high value).

Even if one only considers the adaptation strategies in
this short list, it is clear that there is a great potential for
fine-grained resource adaptive behavior. However, SpaCE is
also taking cognitive [24], physical and contextual resources
into account. These include, e.g., the (short term) memory
load, the attentional focus, and the retention performance
of a user, as well as his travel speed, and his current means
of transportation. The reasoning that is done on these fac-
tors can also benefit from the separation of purely domain-
specific computation and resource considerations. By mak-
ing the adaptation strategies for technical resources and the
resources themselves explicit in RAJA, it becomes much
easier to map cognitive, physical and contextual resources
to technical ones, and to select the appropriate adaptation
strategy. In addition, the task of modifying the mapping
(e.g. because of new psychological results) is facilitated.

6. DISCUSSION

RAJA fills the gap of supporting resource-adaptivity left
by existing agent infrastructures promoting agent interop-
erability. In contrast to the specifications FIPA 2000, which
are concerned with providing an infrastructure to monitor
and control the ever changing resources such as communi-
cation connection, RAJA goes a step further by supporting
adaptation both at system- and application-level. The pro-
posed Monitor Agent is comparable to our meta agent Re-
source Monitor. Compared to non agent-based middleware
addressing resource-awareness such as Odyssey and Agilos
RAJA distinguishes itself by its greater flezibility, which
characterizes agent-based approaches. Adaptation decisions
can be negotiated between the agents or made corporately
at runtime. RAJA differs from actor- or agent-based ap-
proaches such as TLAM or DECAF by its concept of con-
trollers. The explicit distinction of basis agents and their
controllers clearly separates domain-specific computation
from reflective computation addressing resource-adaptivity.
This makes it possible to convert a legacy resource-unaware
application into a resource-adaptive application easily by
attaching a controller. The separation between controllers
and meta agents allows the basis agents to be more au-
tonomous (compared to the TLAM architecture [28]). Their
controllers can use the services of several meta agents simul-
taneously, choose the most suitable adaptation suggestion or
even apply a combination of several of them.

7. CONCLUSIONSAND FUTURE WORK

We presented the RAJA agent infrastructure for resource-
adaptive systems. It is a multi-level reflective architecture:

e The decoupling of basis agents and meta agents sep-
arates non-functional resource management from ap-
plication functionality. Algorithms and policies imple-
mented by the system-level meta agents are reusable

by different applications. Changes can be implemented
without affecting the basis agents.

e The distinction between basis agents and their con-
trollers allows structured programming and eases the
transformation of resource-unaware legacy systems
into resource-adaptive systems.

e The separation between controllers and meta agents
isolates application- from system-level resource man-
agement and advocates autonomy of agents.

We implemented a prototype of RAJA and have been im-
plementing several resource-adaptive agent systems based
on it. We compared our concept with existing specifications,
agent infrastructures and resource-aware middleware.

For further work we are interested in providing intelli-
gent task scheduling and task distribution both at intra- and
inter-agent level. At the intra-agent level RAJA provides
each basis agent with a local scheduler, which determines
the execution order of the (sub-)tasks contained within the
agent. The current RAJA implementations use the default
schedulers delivered by JADE and FIPA-OS, which applies
a round-robin non-preemptive scheduling policy and allows
tasks to be executed in the order events (e.g. incoming mes-
sages) arrive for those tasks respectively. We plan to im-
prove the default schedulers and add the ability to distribute
the (sub-)tasks, if possible, to exploit parallelism and assure
balanced load in distributed environments. At the inter-
agent level an incoming request to the MAS should be at first
decomposed into sub-requests to several basis agents. This
task of decomposition is application-specific and must be
handled by agent developers themselves. The RAJA infras-
tructure could schedule the sub-requests using a meta agent
called Scheduler and distribute them to basis agents which
are possibly located on different sites. Provided with explic-
itly specified task structures, intelligent local schedulers, and
the meta agent Scheduler, the RAJA infrastructure supports
adaptation both at planning- and scheduling-level [5].

Additionally, we see several points to enhance the RAJA
prototype. We will equip the default controller with learn-
ing algorithms, such that adaptation decisions can be made
more “adaptively”. For example, when profiting from load
balancing the definition of overload threshold could be ad-
justed according to the performance behaviour. The current
meta agent Load Balancer uses a simple sender-initiated load
balancing algorithm, where the overloaded agent activates
the balancing process. We intend to support a wider range
of load balancing algorithms. Agent developers should be
provided with methods to specify one of them for actual use
and even to insert their own algorithms. To further ease
agent development we plan to offer a graphical interface to
specify the task structure of basis agents and wisualization
tools to show the local loads of agents, as well as the dy-
namic distribution of (sub-)tasks, which together achieve
certain goals.
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